
1 MediaMan 3 Data Source Open Specification

MediaMan 3 Data Source Open Specification

This document describes the specification of the alternative data source import feature in

MediaMan 3. This document contains no specific copyrights and is released to Public Domain.

Document release information:

 Version: 1.0

 Release Date: 9-23-2008

 MediaMan Version: 3.0 (build 1020)

 Author: He Shiming (heshiming@imediaman.com)

 URL: www.imediaman.com

Overview

MediaMan 3 features importing from alternative data sources in addition to Amazon

International websites. These alternative data sources are typically online stores that provide

product information similar to Amazon. Commonly, online stores feature searching, item detail

lookup, and image retrieval. MediaMan read and parse data from these stores using these

features and eventually form a record inside the collection file.

A data source can be defined with an XML file. All data source definition XML files should be

put into C:\Program Files\MediaMan\DataSource . There is no special limitation on the name of

the file. But it’s recommended that you prefix the file name with your nicknames to avoid

duplicate problems among other developers. The XML file doesn’t have a particular schema or

DTD, but it must be defined according to the rules and specification in this document. In a

nutshell, this XML file contains information about the URL of the website, and a series of regular

expressions to extract meaningful data.

Knowledge required to develop a data source definition: HTML, some HTTP knowledge, and

fluent regular expression. Tools required: Notepad or other editing tool, Regular Expression

Designer (www.radsoftware.com.au).

Understanding Alternative Data Sources in MediaMan 3

MediaMan 3 will check the DataSource directory upon program start. It’ll read all XML files

and parse them. It will then keep an internal list of successfully parsed ones. In the import mode,

a user can click the “Amazon U.S.” link to access an import site menu. The parsed data sources

will be included in “Other Sites”.

When the user chooses to run an import from an alternative data source in MediaMan 3, the

internal import manager will prepare a 4 stage process:

1. Item Search

2. Item Detail Lookup

3. Item Image Page Lookup

mailto:heshiming@imediaman.com
http://www.imediaman.com/
http://www.radsoftware.com.au/

2 MediaMan 3 Data Source Open Specification

4. Item Image Retrieval

The stage is designed to fit the common process of item look up in e-commerce sites. A user

will first find the “search page” and enter some keywords of the product to look for. Then choose

an item from the results to look for details. And click on the image to get a larger view, finally, see

the larger image.

Each stage is associated with a URL, a regular expression and a list of field IDs to specify

where to store the parsed data. When the task is being executed, the program retrieves the

content for each stage and parses data for each stage. Currently, MediaMan will only look for 5

items from the search results.

Evaluating and Beginning Development

To develop an XML data source definition, the target website should be should be well-

formed. This means if the website is user-friendly and good-looking, the development will be

much easier. You will also need to check if the information on the website can be fetched with

the 4 stage mentioned above.

Let’s take a first look at the definition file for Barnes and Noble. It’s included in MediaMan 3’s

installation. So you can find it at C:\Program Files\MediaMan\DataSource\demo.xml . It’s designed

to retrieve content from www.barnesandnoble.com .

http://www.barnesandnoble.com/

3 MediaMan 3 Data Source Open Specification

The definition is very straightforward. First, the XML definition itself must be in UTF-8

encoding. The root element is named “MediaManDataSource”. Inside which, there are nodes that

define the basics. You can put the information you like into “Name”, “Version”, “Copyright”, but

be aware that “Name” is used to display the entry in the menu.

“Encoding” specifies the encoding of the target website. Currently, only two values are

supported “UTF-8” or “ANSI”. If the website is not in UTF-8 encoding, you need to use ANSI and

allow local processing of encodings. “Nature” specifies the type of the website. Currently only

“HTML” is supported. These nodes must exist.

Then there is the “Definition” node, it’s a big node containing the stage definition. The 4

stages mentioned earlier are defined here.

Let’s take a look at the first stage. It has a “Type” node. Currently, only 4 values are

supported in this node, “SearchResult”, “RecordPage”, “ImagePage”, “Image”. They are

referring to “Item Search Result”, “Item Detail Page”, “Large Image Page”, “Image”. The next

node is “URL”, it specifies what URL to retrieve at this stage. Many websites support an

HTTP/GET based search. In the example, “[SearchKeyword]” will be replaced by the keyword the

user has entered. You don’t need to worry about URL escaping. MediaMan handle this

automatically.

“RegularExpressionPreParse” node can only be used with “SearchResult”. Its purpose is to

extract the area containing the result before actually parsing the result entries one by one. This is

required because most search result pages contains not only the results, but also some other

information, and/or styling page header and bottom. The item result entries can use similar HTML

tags to styling page header, such as TABLE or TR. That’s why we need to extract the part of the

actual results and improve matching results. In this example, the regular expression is “Sort

by:(.*)Sort by:” (Note: All regular expressions must be contained by a CDATA node because they

can contain special characters not allowed in XML.). Which means, MediaMan will first look for

“Sort by:” in the result page, and extract the content until the next “Sort by:”. Note that the

brackets marked the elements to be extracted. If no brackets are in the expression, nothing will

be extracted. Let’s take brief look at the page source code and find out how this works. The

following content is part of the page:

http://search.barnesandnoble.com/booksearch/results.asp?WRD=snowball .

http://search.barnesandnoble.com/booksearch/results.asp?WRD=snowball

4 MediaMan 3 Data Source Open Specification

The highlighted “Sort by:” marks the beginning of the match. Note that it doesn’t matter

whether the extracted part is well-formed in terms of HTML. You just need to make sure they

contain enough information.

Then, let’s take a look at “RegularExpressionT1” node. It contains a regular expression to

parse actual item information from the extracted part above. Its content is also pretty

straightforward, “<div class="bc-wrapper">.*?<div class="bc-desc"><h2>(.*?).*?ISBN-13.*?(.*?).*?Add to wish list”. It contains 3 brackets to

extract 3 pieces of information. The following part of HTML is the content this expression tries to

match:

Again, pay attention to the highlighted part that says “<div class=”bc-wrapper”>”, which is

the same as the start of the expression. Then, you’ll see that the 3 pieces of information

extracted are: the URL of the title, the name of the title, and its ISBN-13 code.

And therefore, in the “ResultMappingT1” node, we have

“x1000000e;x10000006;x10000010”, which is the ID for these three fields delimited by semicolon.

Check the appendix section for a list of available fields.

The next stage “RecordPage” will be executed right after the search finishes. Note the URL

node, we didn’t actually used the URL parsed in the previous stage. Instead, we figured out a

better way to target items by ISBN-13. The “x10000010” in the square brackets will be replaced by

the ISBN-13 code parsed in the previous stage. You can use any field as the retrieval URL. But

make sure these fields are set in result mapping previously.

Typically, the “RecordPage” must also parse the URL for images or a page containing images.

You can store them temporarily in field “x10000011”, “x10000012”, or “x10000013”. It’s

5 MediaMan 3 Data Source Open Specification

recommended that you put the image page URL into “x10000012” or “x10000013”, and the actual

URL to JPEG or GIF files in “x10000011”.

However, in the example, again the “ImagePage” doesn’t really use the parsed URL. It uses

the ISBN-13 code to construct the image page. Thanks to the designers at Barnes and Noble, this

really made things simple. So after some parsing, we have our actual image URL mapped to

“x10000011”.

So eventually, in the “Image” stage, we only put [x10000011] as URL indicating we would like

to retrieve it as the cover image. Please note that “Image” cannot contain a regular expression

node, and “ResultMappingT1” node must contain only the character “1”.

And voila! The process is complete.

Final Checks

Before trying with MediaMan, use services like

http://www.xml.com/pub/a/tools/ruwf/check.html to check the well-formness of your XML file.

MediaMan uses CRLF (“\r\n”) internally for fields such as artist, author, and actor to separate

between multiple values. But often times, a parsing process cannot convert a common delimiter,

such as comma or semicolon to CRLF. MediaMan will try to perform this conversion internally, but

can’t guarantee graceful output.

Also note that “SearchResult”, “RecordPage”, and “ImagePage” can actually contain more

than one regular expression. Other than “RegularExpressionT1”, you can put

“RegularExpressionT2”, and “RegularExpressionT3”. The result mapping node thus becomes

“ResultMappingT2”, or “ResultMappingT3”. This is a fallback design, and its purpose is simple. If

T1 fails, MediaMan tries T2 with the same content. If all expressions failed to match, MediaMan

will give up and prompt user that no match is found.

Appendix: Field IDs

FIELD_TITLE x10000006

FIELD_ASIN x10000008

FIELD_NUMMEDIA x10000009

FIELD_MEDIA x1000000a

FIELD_PUBLISHER x1000000b

FIELD_RELEASEDATE x1000000c

FIELD_GROUP x1000000d

FIELD_DETAILURL x1000000e

FIELD_UPC x1000000f

FIELD_EAN x10000010

FIELD_IMAGEURLLARGE x10000011

FIELD_IMAGEURLSMALL x10000012

FIELD_IMAGEURLMEDIUM x10000013

FIELD_DESCRIPTION x10000014

FIELD_ASPECTRATIO x10000015

FIELD_DVDLAYERS x10000016

FIELD_DVDSIDES x10000017

FIELD_PICTUREFORMAT x10000018

FIELD_REGION x10000019

FIELD_RUNNINGTIME x1000001a

FIELD_STUDIO x1000001b

FIELD_THEATRICALRELEASE x1000001c

FIELD_AUDIENCERATING x1000001d

FIELD_ACTORS x1000001e

FIELD_DIRECTORS x1000001f

FIELD_FORMAT x10000020

http://www.xml.com/pub/a/tools/ruwf/check.html

6 MediaMan 3 Data Source Open Specification

FIELD_LANGUAGE x10000021

FIELD_PUBLICATIONDATE x10000022

FIELD_NUMPAGES x10000023

FIELD_ORIGINALTITLE x10000024

FIELD_AUTHORS x10000025

FIELD_TRANSLATORS x10000026

FIELD_ISBN x10000027

FIELD_LABEL x10000028

FIELD_NUMTRACKS x10000029

FIELD_ARTISTS x1000002a

FIELD_TRACKS x1000002b

FIELD_ESRBRATING x1000002c

FIELD_FEATURES x1000002d

FIELD_PLATFORMS x1000002e

FIELD_AVGCUSTOMERRATING

 x1000002f

FIELD_TOTALCUSTOMERREVIEW

 x10000030

FIELD_CRRATING x10000031

FIELD_CRSUMMARY x10000032

FIELD_CRCOMMENT x10000033

FIELD_CUSTOMFIELDS x10000034

FIELD_DATEADDED x10000038

FIELD_LISTPRICE x10000039

FIELD_NOTES x1000003e

FIELD_SUBJECTS x10000040

FIELD_GENRE x10000041

FIELD_AUDIOFORMAT x10000042

FIELD_CATALOGNO x10000043

FIELD_SERIES x1000004c

FIELD_VOLUME x1000004d

FIELD_AWARDS x1000004e

FIELD_SALESRANK x1000004f

FIELD_MPN x10000050

FIELD_CREATOR x10000051

FIELD_PACKAGEDIMENSIONS

 x10000052

FIELD_DEWEYDECIMALNUMBER

 x10000053

FIELD_IMDBRATING x10000054

FIELD_FILMLOCATION x10000055

FIELD_PLOT x10000056

	MediaMan 3 Data Source Open Specification
	Overview
	Understanding Alternative Data Sources in MediaMan 3
	Evaluating and Beginning Development
	Final Checks
	Appendix: Field IDs

